Supervised learning of bag-of-features shape descriptors using sparse coding

نویسندگان

  • Roee Litman
  • Alexander M. Bronstein
  • Michael M. Bronstein
  • Umberto Castellani
چکیده

We present a method for supervised learning of shape descriptors for shape retrieval applications. Many contentbased shape retrieval approaches follow the bag-of-features (BoF) paradigm commonly used in text and image retrieval by first computing local shape descriptors, and then representing them in a ‘geometric dictionary’ using vector quantization. A major drawback of such approaches is that the dictionary is constructed in an unsupervised manner using clustering, unaware of the last stage of the process (pooling of the local descriptors into a BoF, and comparison of the latter using some metric). In this paper, we replace the clustering with dictionary learning, where every atom acts as a feature, followed by sparse coding and pooling to get the final BoF descriptor. Both the dictionary and the sparse codes can be learned in the supervised regime via bi-level optimization using a taskspecific objective that promotes invariance desired in the specific application. We show significant performance improvement on several standard shape retrieval benchmarks.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rice Classification and Quality Detection Based on Sparse Coding Technique

Classification of various rice types and determination of its quality is a major issue in the scientific and commercial fields associated with modern agriculture. In recent years, various image processing techniques are used to identify different types of agricultural products. There are also various color and texture-based features in order to achieve the desired results in this area. In this ...

متن کامل

Robust Image Analysis by L1-Norm Semi-supervised Learning

This paper presents a novel L1-norm semisupervised learning algorithm for robust image analysis by giving new L1-norm formulation of Laplacian regularization which is the key step of graph-based semi-supervised learning. Since our L1-norm Laplacian regularization is defined directly over the eigenvectors of the normalized Laplacian matrix, we successfully formulate semi-supervised learning as a...

متن کامل

Recognition of Visual Events using Spatio-Temporal Information of the Video Signal

Recognition of visual events as a video analysis task has become popular in machine learning community. While the traditional approaches for detection of video events have been used for a long time, the recently evolved deep learning based methods have revolutionized this area. They have enabled event recognition systems to achieve detection rates which were not reachable by traditional approac...

متن کامل

Assessing Sparse Coding Methods for Contextual Shape Indexing of Maya Hieroglyphs

Abstract— Bag-of-visual-words or bag-of-visterms (bov) is a common technique used to index Multimedia information with the purposes of retrieval and classification. In this work we address the problem of constructing efficient bov representations of complex shapes as are the Maya syllabic hieroglyphs. Based on retrieval experiments, we assess and evaluate the performance of several variants of ...

متن کامل

Chronological classification of ancient paintings using appearance and shape features

Ancient paintings are valuable for historians and archeologists to study the humanities, customs and economy of the corresponding eras. For this purpose, it is important to first determine the era in which a painting was drawn. This problem can be very challenging when the paintings from different eras present a same topic and only show subtle difference in terms of the painting styles. In this...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Comput. Graph. Forum

دوره 33  شماره 

صفحات  -

تاریخ انتشار 2014